Menofia University	Subject: Introduction to	
Faculty of Enginering Shebien El-kom	Ordinary Differential Equations	
Basic Engineering Science Dep.	Code: BES 506	
Post Graduate Examination, 2015-2016		Time Allowed : 3hrs
Date of Exam : $30 / 05 / 2018$		Total Marks: 100 Marks

Answer all the following questions

|لامتحان في صفحتان

Question 1 [25 Marks]

(A) Find the general solution of the following first order first degree ordinary differential equations:
(1) $\left(x^{3} y\right) \frac{d y}{d x}=(1+x) \sec 3 y$
(2) $\left(y e^{\frac{y}{x}}+x\right) d x-x e^{\frac{y}{x}}=0$
(3) $x \frac{d y}{d x}+3 y=\frac{\sin 2 x}{x}$
(B) Find the general solution of the first order first degree ordinary differential equation:

$$
x \frac{d y}{d x}-y^{2} \ln x+y=0
$$

(C) Find the general solution of the first order first degree ordinary differential equation:

$$
\left(x+y^{2} \sin x-y^{3}\right) d x=\left(3 x y^{2}+2 y \cos x\right) d y
$$

Question 2 [25 Marks]

(A) Explain all cases of the integrating factor to reduce the first order first degree ordinary differential equation to an exact equation. Solve this equation as an example

$$
\left(y+x y^{2}\right) d x-x d y=0
$$

(B) Find the general solution of the first order but not of first degree ordinary differential equations:
(1) $\left(\frac{d y}{d x}\right)^{2}+2 y \cot x \frac{d y}{d x}=y^{2}$
(2) $\left(\frac{d y}{d x}\right)^{2}-2 x \frac{d y}{d x}+y=0$
(C) Find the general solution of the second order first degree ordinary differential equations:
(1) $x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}=0$
(2) $y \frac{d^{2} y}{d x^{2}}+1=\left(\frac{d y}{d x}\right)^{2}$

Question 3 [25 Marks]

(A) Prove that if $y_{1}=\cos 4 x, y_{2}=\sin 4 x$, and $y_{3}=e^{3 x}$ are linearly independent functions. Discus completely all the difference between the general solution and particular solution of an ordinary differential equation.Find the homogeneous differential equation which the complement solution is : $y_{c}=c_{1} y_{1}+c_{2} y_{2}+c_{3} y_{3}$ where c_{1}, c_{2}, and c_{3} are constants.
(B) Find the general solution of the non-homogenous system of differential equations:

$$
\frac{d^{2} x}{d t^{2}}-y=e^{2 t} \quad \text { and } \quad \frac{d y}{d t}-x=\sin (2 t)
$$

(C) Find the total solution of the following non-homogenous differential equation by the undetermined coefficients method.

$$
\frac{d^{4} y}{d x^{4}}-y=4 \sinh 3 x+x^{2}
$$

Question 4 [25 Marks

(A) Find the total solution of the following non-homogenous differential equation by the undetermined coefficients method.

$$
\frac{d^{2} y}{d x^{2}}+16 y=\sin (4 x)
$$

(B) Find the total solution of the following non-homogenous differential equation by the undetermined coefficients method.

$$
[(D)(D-1)(D-2)] x=t^{3}+e^{2 x}, D=\frac{d}{d t}
$$

(C) Determine the power series solution of $\frac{d^{2} y}{d x^{2}}+2 x \frac{d y}{d x}+y=0$, using the Leibniz-Maclaurin method given the boundary conditions that at $\mathrm{x}=0, \mathrm{y}=0$ and $\frac{\mathrm{dy}}{\mathrm{dx}}=1$.

